MOOC Course- Regression Analysis and Forecasting - January 2017

Assignment 2

[1] Consider the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., n, $\epsilon_i \sim N(0, \sigma^2)$ are identically and independently distributed. The parameters β_0 , β_1 and σ^2 are estimated by ordinary least squares estimation where $\hat{\beta}_1 = s_{xy}/s_{xx}$, $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$, $s_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$, $s_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$, $s_{yy} = \sum_{i=1}^n (y_i - \bar{y})^2$, $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$ and \hat{y}_i is the *i*th fitted value. The variance of $\hat{\beta}_0$ is specified by

(i)
$$\frac{1}{n-2} (\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}) \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

(ii) $\frac{1}{n-2} (\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}) \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$
(iii) $\frac{1}{n-2} (\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}) (s_{yy} - \hat{\beta}_1^2 s_{xx}).$
(iv) $\frac{1}{n-2} (\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}) (s_{yy} - \hat{\beta}_1 s_{xy}).$

A. (i) and (ii).
B. (ii) and (iv).
C. (ii), (iii) and (iv).
D. (i), (ii), (iii) and (iv).

[2] If the random errors ϵ_i 's having zero mean and unknown variance σ^2 in the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., 40 do not follow the normal distribution, then which of the following test is used to test the significance of null hypothesis $H_0: \beta_1 = 5$?

- A. t test.
- B. Z test.
- C. Any one of the t test or Z test.
- D. None of the t test or Z test.

[3] Let $s_{xx}^* = \sum_{i=1}^n x_i^2$, $s_{yy}^* = \sum_{i=1}^n y_i^2$ and $s_{xy}^* = \sum_{i=1}^n x_i y_i$ The 100(1 – α)% confidence interval of β in the simple linear regression model $y_i = \beta x_i + \epsilon_i$ where ϵ_i 's are identically and independently distributed following normal distribution with zero mean and unknown variance σ^2 is

$$\begin{aligned} \text{A.} & \left(\frac{s_{xy}^*}{s_{xx}^*} - \frac{z_{\alpha/2}}{\sqrt{(n-1)s_{xx}^*}}\sqrt{s_{yy}^* - \frac{(s_{xy}^*)^2}{s_{xx}^*}}, \frac{s_{xy}^*}{s_{xx}^*} + \frac{z_{\alpha/2}}{\sqrt{(n-1)s_{xx}^*}}\sqrt{s_{yy}^* - \frac{(s_{xy}^*)^2}{s_{xx}^*}}\right) \\ \text{B.} & \left(\frac{s_{xy}^*}{s_{xx}^*} - \frac{t_{\alpha/2,n-1}}{\sqrt{(n-1)s_{xx}^*}}\sqrt{s_{yy}^* - \frac{(s_{xy}^*)^2}{s_{xx}^*}}, \frac{s_{xy}^*}{s_{xx}^*} + \frac{t_{\alpha/2,n-1}}{\sqrt{(n-1)s_{xx}^*}}\sqrt{s_{yy}^* - \frac{(s_{xy}^*)^2}{s_{xx}^*}}\right) \\ \text{C.} & \left(\frac{s_{xy}^*}{s_{xx}^*} - \frac{t_{\alpha/2,n-2}}{\sqrt{(n-2)s_{xx}^*}}\sqrt{s_{yy}^* - \frac{(s_{xy}^*)^2}{s_{xx}^*}}, \frac{s_{xy}^*}{s_{xx}^*} + \frac{t_{\alpha/2,n-2}}{\sqrt{(n-2)s_{xx}^*}}\sqrt{s_{yy}^* - \frac{(s_{xy}^*)^2}{s_{xx}^*}}\right) \\ \text{D. None of these.} \end{aligned}$$

[4] The 95% confidence interval of β_1 in the model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., 7, $\epsilon_i \sim N(0, \sigma^2)$ where σ^2 is unknown, is obtained for a given set of data as (10, 20). The tabulated value of t statistic at 5% level of significance with 5 degrees of freedom is 2.0. Which of the following statements are correct.

Statement 1 : $\hat{\beta}_1 = 15.0$ and standard error of $\hat{\beta}_1$ is 2.5.

Statement 2 : $\hat{\beta}_1 = 15.0$ and variance of $\hat{\beta}_1$ is 6.25.

Statement 3 : The null hypothesis $H_0: \beta_1 = 5$ is accepted at 5% level of significance.

Statement 4 : The null hypothesis $H_0: \beta_1 = 5$ is rejected at 5% level of significance.

- A. Statements 1, 2 and 3 are correct.
- B. Statements 1, 2 and 4 are correct.
- C. Statements 1 and 3 are correct.
- D. All the statements 1 and 4 are correct.

[5] A simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., n is fitted on the basis of given set of data. The fitted model is obtained as y = 2 + 3x. The interpretation of the value 3 is

- A. when x changes by one unit, then the average value of y changes by 3 units.
- B. when x changes by one unit, then the value of y changes by 3 units.
- C. when x changes by one unit, then the average value of y lies in the interval (0,3).
- D. when x changes by one unit, then the value of y lies in the interval (0,3).

[6] A simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., n is fitted on the basis of given set of data. The fitted model is obtained as y = 6 + 7x. The interpretation of the value 6 is

- A. when x = 0, then the average value of y is 6 units.
- B. when x = 0, then the value of y is 6 units.
- C. when x changes by 7 units, then the change in the average value of y is 6 units.
- D. when x changes by 7 units, then the change in the value of y is 6 units.

Question 7 - 10 are based on the following output of a software which is obtained while fitting a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$, $\epsilon \sim N(0, \sigma^2)$ to a given set of data.

- [7] The fitted regression model is
 - A. y = 44.2 + 2.89x
 - B. y = 2627.8 37.15x
 - C. y = -37.15 + 2627.8x
 - D. y = 59.47 12.86x

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	1	1527483	1527483	165.38	0.000
Error	18	166255	9236		
Total	19	1693738			

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	2627.8	44.2	59.47	0.800	
x	-37.15	2.89	-12.86	0.000	1.00

Figure 1: Software output for Questions 7 - 10

- [8] The null hypothesis $H_0:\beta_1=0$ at 5% level of significance is
 - A. accepted.
 - B. rejected.
 - C. nothing can be said.
 - D. Inadequate data.
- [9] The null hypothesis $H_0: \beta_0 = 0$ at 5% level of significance is
 - A. accepted.
 - B. rejected.
 - C. nothing can be said.
 - D. Inadequate data.

- [10] The least squares estimate of σ^2 is
 - $A. \ 44.2$
 - B. 2.89
 - C. 166255
 - D. 9236

Solution to Assignment 2

Answer of Question 1 - D

Answer of Question 2 - D

Answer of Question 3 - B

Answer of Question 4 - B

Answer of Question 5 – A

Answer of Question 6 – A

Answer of Question 7 - B

Answer of Question 8 - B

Answer of Question 9 – A

Answer of Question 10 - D